Instituto Politécnico de Santarém PROVA ESPECÍFICA DE QUÍMICA – outubro 2020

Nome :	CC:	_
GRUPO I : Ele	mentos químicos e sua organização	Cotação: 5 valores
	ima amostra de cobre (Cu) de elevada pureza. e quantas moles de Cu estão presentes em 317, ,55 gmol ⁻¹	75 g desta substância.
	e quantos átomos de Cu estão presentes em 31 5,022 x 10 ²³ mol ⁻¹	7,75 g desta substância.
2. Os isótopo	s:	
	A. são isóbaros B. são átomo que apresentam diferente r C. são átomos que apresentam diferente D. são átomos que apresentam igual núm número de massa e de neutrões E. estão localizados no núcleo do átomo	número atómico e de protões
3. Quando ı	um átomo perde um electrão	
Α.	Torna-se um ião positivo com um raio menor	

Torna-se um ião positivo com um raio maior

Torna-se um ião negativo com um raio menor Torna-se um ião negativo com um raio maior

Torna-se um ião negativo com um raio igual ao raio do átomo

В. С.

D.

E.

GRUPO II: Propriedades e transformações da matéria

- 4. Considere o composto hidróxido de sódio (NaOH).
- 4.1. Calcule a massa molar (MM) do hidróxido de sódio.

 $MM(Na) = 23,0 \text{ gmol}^{-1}$

 $MM(O) = 16,0 \text{ gmol}^{-1}$

 $MM(H) = 1.0 \text{ gmol}^{-1}$

4.2. Determine a massa (m) de hidóxido de sódio presente em 0,50 moles deste composto.

- 5. O número de moles presente em 1 L de solução designa-se por
 - A. molalidade
 - B. molaridade
 - C. normalidade
 - D. massa molar
 - E. percentagem mássica
- 6. Acerte a seguinte reação química:

$$NO(g) + O_2(g) \rightleftarrows NO_2(g)$$

7. Considere o seguinte equilíbrio químico:

$$aA(g) + bB(g) \leftrightarrow cC(g) + dD(g)$$

Qual a expressão matemática que melhor descreve a proporção entre os reagentes e os produtos, no equilíbrio químico?

A.
$$K_c = \frac{\left[C\right]_e^c \left[D\right]_e^d}{\left[A\right]_e^b \left[B\right]_e^a}$$

B.
$$K_c = \frac{[C]_e^c + [D]_e^d}{[A]_a^a + [B]_a^b}$$

c.
$$K_c = \frac{[A]_e^a + [B]_e^b}{[C]_e^c + [D]_e^d}$$

D.
$$K_c = \frac{[C]_e^c [D]_e^d}{[A]_e^a [B]_e^b}$$

$$\mathbf{E.} \quad K_c = \frac{\left[A\right]_e^a \left[B\right]_e^b}{\left[C\right]_e^c \left[D\right]_e^d}$$

8. Considere o seguinte equilíbrio químico

$$2SO_2(g) + O_2(g) \Rightarrow 2SO_3(g)$$

Num reactor de 1L, misturou-se uma determinada quantidade de dióxido de enxofre (SO_2) e de oxigénio (O_2), à temperatura de 832°C. Depois de algum tempo, o sistema atingiu o equilíbrio, tendo-se obtido 0,970 moles de dióxido de enxofre (SO_2), 0,485 moles de oxigénio (O_2) e 0,030 moles de trióxido de enxofre (SO_3). Determine o valor da constante de equilíbrio (K_c).

GRUPO IV: Reações em sistema aquoso

9. Pretendem-se preparar 500 mL de uma solução A de hidróxido de sódio (NaOH). Para tal, dissolveram-se 0,200 g do sólido em água.

Cotação: 5 valores

a) Qual é a molaridade desta solução.

 $MM(Na) = 23.0 \text{ gmol}^{-1}$

 $MM(O) = 16,0 \text{ gmol}^{-1}$

 $MM(H) = 1,01 \text{ gmol}^{-1}$

- 10. À medida que se adicionam algumas gotas de uma solução aquosa de um ácido forte a uma solução de amoníaco, a temperatura constante, o pH da solução resultante _____
 - A. diminui
 - B. aumenta
 - C. não se altera
- 11. Na reação de formação do HI,

$$I_2(g) + H_2(g) = HI(g)$$

o número de oxidação do iodo no iodeto de hidrogénio é ______, sendo a espécie I_2 o agente_____.

- A. +1 ... oxidante
- B. -1 ... oxidante
- C. zero... redutor
- D. +1 ... redutor
- E. -1 ... redutor